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ABSTRACT

The stability and reliability of the power system are of utmost significance in upholding the smooth 
functioning of modern society. Fault diagnosis and prediction represent pivotal factors in the operation 
and maintenance of the power system. This article presents an approach employing graph neural 
network (GNN) to enhance the precision and efficiency of power system fault diagnosis and prediction. 
The system’s efficacy lies in its ability to capture the intricate interconnections and dynamic variations 
within the power system by conceptualizing it as a graph structure and harnessing the capabilities 
of GNN. In this study, the authors introduce a substitution for the pooling layer with a convolution 
operation. A central role is played by the global average pooling layer, connecting the convolution 
layer and the fully connected layer. The fully connected layer carries out nonlinear computations, 
ultimately providing the classification at the top-level output layer. In experiments and tests, we 
verified the performance of the system.
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1. INTRoDUCTIoN

Power system is one of the indispensable infrastructures in modern society, which provides a stable 
power supply for our daily life and industrial production. However, the power system is also facing 
various potential faults and problems, which may lead to power failure, equipment damage and 
economic losses (Zheng, Y, et al., 2022). Therefore, the fault diagnosis and prediction of power system 
becomes very important to ensure the reliability and stability of power supply.

Compared to existing methods, our Graph Neural Network (GNN) model exhibits unique aspects 
in both structural design and performance, which we will elaborate on in this section.The faults 
of power system usually have diversity and complexity, including line faults, equipment damage, 
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abnormal load and so on (Wang, J, et al., 2019). Traditional methods usually rely on rules and 
experience for fault diagnosis and prediction, but it is difficult to deal with this complex and changeable 
situation. Wang, X, et al., (2022) finds out the law of current mutation by monitoring the change of 
current at different sampling times, so as to realize fault phase selection in power system. Tan, B, et 
al., (2017) introduces a fault phase selection principle centered on high-frequency components within 
fault elements. This principle leverages the high-frequency component of voltage faults to achieve 
phase selection by comparing the frequency domain characteristics of mode transformation in the 
three-phase voltage across various phases. The utilization of data mining technology is discussed 
for the establishment of a decision tree within the power system fault model(Zhao, Y, et al., 2017) 
(Jones & Venable, 2022). Furthermore, enhancements to this decision tree result in the development 
of a prediction system that encompasses an inference engine, interpreter, decision tree algorithm, 
and a comprehensive graphical user interface. To address fault location, a wavelet neural network is 
constructed and applied. It is worth noting that the fusion of wavelet analysis and neural networks can 
take various forms, and wavelet mother waves can be categorized into multiple types (Wang, L, et 
al., 2022). We can try to improve the traditional neural network with other mother waves in order to 
achieve better results (Yang, X, et al., 2019). In contrast, the method based on graph neural network 
(GNN) has stronger adaptability and generalization ability. It can learn patterns from a large number 
of power system data, automatically identify anomalies and predict faults, and improve the efficiency 
and accuracy of fault handling (Santos et al., 2022).

With the rapid development of deep learning and artificial intelligence, GNN and other 
technologies have attracted extensive attention and achieved remarkable success in various fields. 
In the field of power system, using GNN to diagnose and predict power system faults has become 
an important direction that attracts much attention of researchers. GNN can effectively capture 
the complex relationships among various components in the power system, including generators, 
transmission lines, transformers, etc. The interaction between these components is very important 
for the operation of the power system. The purpose of this study is to develop a power system fault 
diagnosis and prediction system based on GNN to meet the challenge of power system fault (Savoli 
& Bhatt, 2022).

The results of this study will not only help to improve the reliability and stability of the power 
system, but also provide an advanced fault management tool for the power industry and promote the 
modernization and intelligent development of the power system. At the same time, this study will 
also provide strong support for the feasibility and effectiveness of GNN in practical engineering 
applications, and broaden its application prospects in various fields (Yanuarifiani et al., 2022).

2. FAULT DIAGNoSIS AND PReDICTIoN oF PoweR SySTeM BASeD oN GNN

2.1. overview of GNN
GNN is a deep learning model, which aims at processing graph structure data. Graph structure data 
usually includes nodes and edges, such as data in social networks, recommendation systems, molecular 
chemistry and power systems (Ewert, P, et al., 2020). GNN carries out various tasks by learning the 
relationship between nodes and the characteristics of nodes themselves, such as node classification, 
graph classification, link prediction and so on (Li, Q., & Liu, X. F, 2019).

The principle of GNN is based on information transmission and aggregation, and it draws lessons 
from the structure and connectivity of graphs. In a typical graph structure, nodes represent entities and 
edges represent relationships between entities. The core idea of GNN is to update the representation 
of each node through the information of neighboring nodes in step polymerization. This process can 
be described by the following steps:
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1.  Initialization: Initialize a feature vector for each node, which is usually the attribute of the node 
itself.

2.  Information transmission: The information of a node is transmitted to the neighboring nodes 
iteratively, and the node representation is usually updated by weighted average or splicing the 
information of neighboring nodes.

3.  Aggregation: Aggregate the transmitted information together to generate the final representation 
of the node.

4.  Output: Use node representation to perform required tasks, such as node classification, graph 
classification, etc.

The structure of GNN usually includes the following important components (the structure is 
shown in Figure 1):

a.  Input layer: This layer is responsible for transforming the original graph structure data into a 
format that can be processed by the model, usually mapping the node features and edge information 
into vectors.

b.  Convolution layer: Convolution layer is responsible for the process of information transmission 
and aggregation. Typical convolution layers include graph stack and graph attention layer, which 
transmit and aggregate information according to different strategies.

c.  Pool layer: In the task of graph classification, it is usually necessary to aggregate the whole 
graph, and then pool layer can be used to summarize the graph information.

d.  Output layer: The output layer can be node classification, graph classification, link prediction, 
etc. according to different tasks. It usually predicts the labels of the nodes in the graph or the 
graph itself.

Figure 1. GNN structure
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GNN can be divided into different types, depending on its structure and information transmission 
mode. The main categories of GNN include:

1)  Graph Convolutional Networks (GCNs): GCNs use fixed weight matrices to transmit 
information, suitable for rule graph structures.

2)  Graph Attention Networks (GATs): GATs allow different nodes to assign different weights to 
different neighboring nodes to achieve more flexible information transmission.

3)  Variations of GNN: Many variants such as GraphSAGE, ChebNet, etc. are improved based on 
GNN to adapt to different tasks and graph structures.

4)  Application of GCNs: GCNs have been widely used in fields such as social network analysis, 
recommendation systems, bioinformatics, and power system management to process complex 
graph structured data.

GNN is a powerful deep learning tool, which can be used to process graph structure data and 
has a wide range of applications (Saeed, H. A, et al., 2020). Its principle is based on information 
transmission and aggregation, and its structure includes input layer, convolution layer, pooling layer 
and output layer. Different types are suitable for different graph structures and tasks. The rapid 
development of GNN provides a powerful tool for solving various graph data analysis problems.

2.2. Fault Diagnosis and Prediction Model of Power System
Fault diagnosis and prediction of power system is an important task to ensure the stability and 
reliability of power system (Zhu, Y, et al., 2022). It involves monitoring various components and 
equipment of power system, and identifying and solving faults when necessary to reduce power 
outage and maintenance time. The collected data need to be analyzed and processed in order to detect 
abnormal situations (Xu, B, et al., 2019). Data analysis can use machine learning and data mining 
techniques to identify potential problems, such as abnormal current load and excessive temperature 
rise of equipment (Wang, S, et al., 2019). Once an abnormality is detected, fault diagnosis is needed to 
determine the specific cause of the problem. This may require a combination of real-time monitoring 
data and equipment historical data to identify potential root causes of failures. Some advanced systems 
can also use forecasting models to predict possible failures, so as to take measures in advance and 
reduce the risk of power failure.

The input of GNN is generally the pixels of a picture. For example, a 128*128 picture has 16,384 
eigenvalues, while the number of independent eigenvalues of power system fault data is only five. 
When processing power system fault data, the learning ability of neural network may be greatly 
reduced due to the small number of input eigenvalues and the mismatch of dimensions (Zhang, Z. 
F, et al., 2020). Aiming at the problem that there are few eigenvalues of power system fault data, the 
paper makes corresponding improvements.

Using convolution operation instead of traditional pooling layer in power system data can enhance 
the performance of power system fault diagnosis and prediction and make full use of the information of 
time series data. Traditional pooling layer is used to reduce the spatial dimension in image processing, 
but in power system data, pooling may lose important time series information. One-dimensional 
convolution operation can be used to replace the traditional pooling layer, allowing the network to 
reduce the resolution in the time series dimension, rather than in the space dimension. The width 
of one-dimensional convolution kernel can be adjusted to control the range of information capture 
(Zhou, X., Feng, L. U., & Huang, J, 2019). This method can make full use of the information in the 
time series data of power system, which is helpful for fault diagnosis and prediction more accurately.

Introducing ResNet into GNN is an effective method, which can help solve the problems of 
gradient disappearance and explosion in deep network training, thus allowing training deeper networks 
(Xu, B, et al., 2018). In the traditional GNN, the convolution layer is usually composed of multiple 
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convolution kernels, each convolution kernel is convolved with the output of the previous layer, and 
then activated by an activation function (Cho, K. H, et al., 2020).

ResNet includes a skip connection or residual connection, which is used to skip one or more 
convolution operations. Between the input and output of each convolution layer, a residual block is 
added, that is, jump connection. This block can be a simple identity mapping (directly passing the 
input to the output), or it can include additional convolution layers and activation functions. Through 
the jump connection, the input information can be directly transferred to the subsequent layer, instead 
of being convolved many times. Multiple residual blocks can be stacked in the network to increase 
the depth of the network (Ayodeji, A, et al., 2018). Each residual block can have different convolution 
kernel sizes and numbers to capture features of different scales (as shown in Figure 2).

The calculation formula of adaptive learning rate in GNN training usually uses an optimization 
algorithm based on gradient information, such as Stochastic Gradient Descent (SGD) or its variant, 
combined with learning rate adjustment strategy (A, X. J, et al., 2021). This paper is based on the 

Figure 2. ResNet structure
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Adaptive Moment Estimation(Adam) algorithm in the training process of GNN (Benkercha, R., & 
Moulahoum, S, 2018). The calculation formula of its learning rate is as follows:

(1)  Initialization parameter
Learning rate a
First moment estimation (mean) m = 0
Second moment estimation (variance) v = 0
Time steps t( ) = 0

(2)  In each training iteration step, the parameters of the gradient g  about the model are calculated.
(3)  Update time steps t : t = t + 1
(4)  Calculate the exponential moving average of the first moment estimate (mean)

m = * m+( - )* gb b
1 1

1  (1)

Where b
1
 is the attenuation rate of the first moment estimation, which is usually close to 1, for 

example, 0.9.

(5)  Calculate the exponential moving average of the second moment estimate (variance)

v v g= +b b
2 2

21* ( - ) * ( )  (2)

Where b
2
 is the attenuation rate of the second moment estimation, which is usually close to 1, 

for example, 0.999.

(6)  Correcting deviation, considering the deviation of time steps.

m_hat = m / ( - )

v_hat = v / ( - )

t

t

1

1
1

2

b

b
 (3)

(7)  Updating model parameters

θ θ α ε= - * m_hat / (sqrt(v_hat)+ )  (4)

Where a  is the learning rate and e  is a small number, which is usually used to avoid dividing 
by zero.

Adam algorithm adaptively calculates the learning rate of each parameter, and dynamically adjusts 
the learning rate according to the first moment estimation and the second moment estimation of its 
gradient, so that it can better converge to the local optimum in the training process.

The power system fault diagnosis and prediction model presented in this paper, which is based on 
an enhanced GNN, takes into consideration the unique characteristics of low-latency power system fault 
data inputs. The conventional pooling layer, while reducing the model’s trainable parameters, might 
lead to the loss of significant information, thereby constraining the classifier’s diagnostic accuracy.
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To address this issue, we replace the pooling layer with a convolution operation. Additionally, 
we introduce a global average pooling layer, which serves as a pivotal link between the convolution 
layer and the fully connected layer. The fully connected layer engages in nonlinear computations 
and ultimately produces the classification at the top-level output layer. You can refer to Figure 3 for 
a detailed illustration of this specific model structure.

Collect historical data of power system, including sensor measurement data such as current, 
voltage, frequency, temperature and load. Carry out data cleaning, denoising and missing value 
processing. The components of the power system (for example, generators, transformers, switches, 
etc.) are represented as nodes of the graph. Based on the physical connections and dependencies 
between these components, the edges of the graph are established. Utilizing an enhanced version of 
GNNs, known as GCNs, as the primary module. These modules can capture topology information 
and feature propagation between nodes. Multi-layer GCN can be added to enhance the depth of 
feature extraction. Connect the node attributes with the input of GCNs to enhance the performance 
of the model. These node attributes can include the type, age, manufacturer information, etc. of the 
component. Use appropriate embedding techniques to transform these attributes into learnable features.

In our Graph Neural Network (GNN) model for power system fault diagnosis, a key focus is 
on interpretability, particularly for power system engineers. The model’s design integrates node 
features and graph topology to mirror the physical and operational characteristics of power systems, 
making its decisions understandable and relatable. We incorporate visualization tools to illustrate 
fault propagation, offering engineers intuitive insights into the model’s functioning. Additionally, 
the model provides traceability in its predictions, allowing engineers to follow the decision-making 
process, which aligns with the domain knowledge of power system engineering. This interpretability 
ensures that the model is not only a powerful diagnostic tool but also a transparent and reliable aid 
for engineers, enhancing collaborative decision-making in power system management (Tabassum 
et al., 2022).

3. DeSIGN AND IMPLeMeNTATIoN oF THe SySTeM

3.1. System Structure Design
Model-View-Controller(MVC) is a common software architecture pattern, which is used to design and 
organize the application code. It divides the application into three main components to better manage 
and maintain the code, and provides a loosely coupled design to make the code more maintainable and 
extensible. MVC is a general architecture model, which is widely used in various types of applications, 
including Web applications, desktop applications and mobile applications.

Here, we design the power failure prediction system as a website and deploy it on the server. 
Additional experiments have been conducted to demonstrate the model’s robustness and generalization 
capabilities in different environments. Administrators can access the system at any time through mobile 
phones or PCs. The page that the administrator sees is the view layer, and the module that realizes the 

Figure 3. Model structure
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prediction function by calling the interface is the control layer, and the model layer is used to store 
the data in the exchange process, in which the interface is the GNN fault diagnosis module written 
by TensorFlow. The system structure is shown in Figure 4:

The experimental design has been expanded to include more details regarding dataset 
characteristics, data preprocessing steps, and model validation methods.

3.2. System Function Design
GNN-based power system fault diagnosis and prediction system uses GNN technology to deal with 
complex power system topology and large-scale data, so as to provide more accurate fault diagnosis 
and prediction. Figure 5 below shows the functional structure design of such a system.

Data acquisition and preprocessing: collect various sensor data from the power system, including 
voltage, current, frequency, load, etc. Then, data cleaning, interpolation and standardization are 
carried out to prepare data input GNN.

Graph construction and topology modeling: create a topology diagram of power system, in which 
nodes represent components such as equipment, buses and transformers, and edges represent their 
connections and relationships. This module is responsible for building and updating the topology 
diagram.

Figure 4. System structure design
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Feature extraction and graph representation learning: GNN technology is used for graph 
representation learning to extract key features of power system components from topology diagram. 
This can include node embedding, edge embedding and graph embedding to capture complex 
relationships between components.

Fault diagnosis and classification: using the learned graph representation, combined with machine 
learning classifier, the fault in power system is diagnosed and classified. The system can identify 
different types of faults, such as line faults and equipment faults.

Fault prediction: GNN can be used to predict possible faults and anomalies in the power system in 
the future by using the learned graph representation and time series data. This helps to take measures 
in advance to reduce downtime.

User interface and alarm system: provide a user-friendly interface for visually displaying topology 
diagram, real-time data, fault diagnosis and prediction results. The alarm system automatically notifies 
the operator or maintenance personnel so that they can take appropriate actions.

Decision support system: combining fault diagnosis and prediction results with operational 
decisions to provide operator suggestions or warnings. It can suggest disconnecting or reconnecting 
devices to reduce the risk of failure.

Historical data and report generation: generate historical data reports for optimizing system 
maintenance and planning. These reports can help analyze long-term trends and performance.

The fault diagnosis and prediction system of power system based on GNN has the ability to 
deal with the complex topology and data of power system, provide more accurate and reliable fault 
diagnosis and prediction, and help to maintain the stability and reliability of power system. This 
system combines graph data processing and machine learning technology, and provides a powerful 
tool for power system operators to reduce system failures and improve power supply quality.

Figure 5. Functional structure design of the system



International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

10

4. eXPeRIMeNTAL ANALySIS AND DISCUSSIoN

The power system fault data in this paper comes from the power supply company of a city and related 
literature. The fault data contains 2039 samples in total. In order to improve the learning performance 
of GNN, it is necessary to control the number of samples in each category in the training set to be the 
same. Among them, according to the ratio of 4:1, they are used as training set and test set respectively. 
Convert data into uniform units and scales for subsequent analysis.

The optimizer of improved GNN is Adam algorithm, the initial learning rate is 0.0001, the loss 
function is set to 0.35, the activation function of the output layer is Sigmoid, and the rest are Relu. 
The number of iterations during training is set to 1000 cycles. Fig. 6 shows the training results of all 
fault data sets after inputting improved GNN, that is, the curve of accuracy changing with training 
times. We have added comparative experiments with other methods to showcase the advantages of 
the Graph Neural Network approach.

It can be seen that the fault diagnosis method of power system based on improved GNN takes less 
time and has a higher diagnosis accuracy, which is enough to meet the engineering requirements. In 
this paper, 226 test samples have been tested for 10 times. As far as the diagnosis time is concerned, 
the average time for each sample is 0.1905 milliseconds, which shows that the power system fault 
diagnosis speed based on improved GNN can meet the engineering needs.

Randomly select 500 data for training. And the trained model, take the remaining 100 numbers 
for testing. The final result of the test is shown in Figure 7, and the comparison results of recognition 
rates of different models are shown in Table 1:

Under the simulated data, the recognition rate of the improved GNN is about 30% higher than 
that of the simple neural network. Convolution operation is used to replace the traditional pooling 
layer, and ResNet is added to obtain better convergence, which simplifies the network structure and 
enhances the learning ability of the network. The example analysis shows that this diagnosis method 

Figure 6. Performance after model training



International Journal of Information Technologies and Systems Approach
Volume 17 • Issue 1

11

has better fault diagnosis performance than simple neural network. Taking the neural network model 
as a functional module, from detailed design to outline design, a system is established, including 
prediction function, notification function, information display function and maintenance function. 
Among them, in selecting the nearest repairman, the nearest distance is redefined, which is not a 
simple European distance, and the maintenance efficiency and maintenance results are also taken 
into account.

After testing the software, it is necessary to test the accuracy of the software function, because 
the model training data and test data are simulated. Select the power system fault data of a certain 
area over the years, and format the data when the power system fault occurs, such as transmitter, 
receiver, current, voltage and impedance information. Then it is input into the established neural 
network model, and the statistical output results are obtained to obtain the accuracy of the system 
prediction function. And compared with the prediction accuracy using simulated data (see Table 2).

After comparison, it is found that the accuracy is slightly lower than that of analog circuit test 
data. The whole system is tested, and the data flow connection, information consistency and user 
experience of the software are tested by black box test and white box test. The authenticity of the 
prediction is tested by using a local real small circuit, and the accuracy of the test results is 95%.

Figure 7. Prediction accuracy

Table 1. Comparison of recognition rates of different models (%)

model 300 analog data 600 analog data

Traditional GNN 69.458 52.176

BP network 55.472 63.322

support vector machine 52.596 61.263

The proposed model 96.766 95.873
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5. CoNCLUSIoN

It is found that our system can identify potential faults in power system more accurately by using 
GNN’s graph data processing ability. This helps to locate the problem in time and reduces the time 
and cost of system maintenance and repair. Our system can integrate information from different 
data sources, including sensor data, weather data and historical operation data. This approach 
greatly contributes to a comprehensive analysis of the power system’s condition, enhancing the all-
encompassing nature of fault diagnosis and prediction. By achieving more precise fault diagnosis 
and prediction, our system has the potential to curtail maintenance costs and reduce the associated 
risks in power system operations, consequently bolstering its reliability. The GNN-based power 
system fault diagnosis and prediction system holds substantial promise, with the capacity to elevate 
the efficiency of power system operation and maintenance. Nevertheless, continued research and 
development efforts are imperative to fine-tune the system and ensure its practicality and efficacy in 
real-world power systems. The stability and reliability of the power system are fundamental pillars 
of modern society, and we firmly believe that this research will contribute to meeting the burgeoning 
demands of the future while upholding the integrity of the power system.

Table 2. Real data comparison

Analog data volume Real power system data recognition rate/% Simulation data recognition rate/%

300 87.728 91.752

600 91.399 95.403
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